Home

opar chuť Rozdíl cofe2o4 band gap génius Pokračující Méně důležitý

Review on augmentation in photocatalytic activity of CoFe2O4 via  heterojunction formation for photocatalysis of organic pollutants in water  - ScienceDirect
Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water - ScienceDirect

Tuning bandgap and surface wettability of NiFe2O4 driven by phase  transition | Scientific Reports
Tuning bandgap and surface wettability of NiFe2O4 driven by phase transition | Scientific Reports

CoFe2O4−Fe3O4 Magnetic Nanocomposites as Photocatalyst for the Degradation  of Methyl Orange Dye
CoFe2O4−Fe3O4 Magnetic Nanocomposites as Photocatalyst for the Degradation of Methyl Orange Dye

Electronic structure and optical band gap of CoFe2O4 thin films: Applied  Physics Letters: Vol 101, No 16
Electronic structure and optical band gap of CoFe2O4 thin films: Applied Physics Letters: Vol 101, No 16

Investigation and Comparison of Cobalt ferrite composite nanoparticles with  individual Iron oxide and Cobalt oxide nanoparticles
Investigation and Comparison of Cobalt ferrite composite nanoparticles with individual Iron oxide and Cobalt oxide nanoparticles

Indirect band gap plots of Cu 1-x Zn x Fe 2 O 4 (x ¼ 0.0, 0.2, 0.4,... |  Download Scientific Diagram
Indirect band gap plots of Cu 1-x Zn x Fe 2 O 4 (x ¼ 0.0, 0.2, 0.4,... | Download Scientific Diagram

Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4  Nanoparticles | Nanoscale Research Letters | Full Text
Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles | Nanoscale Research Letters | Full Text

Environmentally Sustainable Synthesis of a CoFe2O4–TiO2/rGO Ternary  Photocatalyst: A Highly Efficient and Stable Photocatalyst
Environmentally Sustainable Synthesis of a CoFe2O4–TiO2/rGO Ternary Photocatalyst: A Highly Efficient and Stable Photocatalyst

Figure 2 from Optical band gap hierarchy in a magnetic oxide: Electronic  structure of NiFe2O4 | Semantic Scholar
Figure 2 from Optical band gap hierarchy in a magnetic oxide: Electronic structure of NiFe2O4 | Semantic Scholar

A one-pot microwave irradiation route to synthesis of CoFe2O4-g-C3N4  heterojunction catalysts for high visible light photocatalytic activity:  Exploration of efficiency and stability - ScienceDirect
A one-pot microwave irradiation route to synthesis of CoFe2O4-g-C3N4 heterojunction catalysts for high visible light photocatalytic activity: Exploration of efficiency and stability - ScienceDirect

Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and  applications in catalytic reduction of nitrophenols and s
Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and s

Heterogeneous sonocatalytic activation of peroxomonosulphate in the  presence of CoFe2O4/TiO2 nanocatalysts for the degradation of Acid Blue 113  in an aqueous environment - ScienceDirect
Heterogeneous sonocatalytic activation of peroxomonosulphate in the presence of CoFe2O4/TiO2 nanocatalysts for the degradation of Acid Blue 113 in an aqueous environment - ScienceDirect

Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial  films by high resolution electron energy loss spectroscopy: Journal of  Applied Physics: Vol 116, No 10
Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy: Journal of Applied Physics: Vol 116, No 10

Band gap engineering of zinc substituted cobalt ferrite for optoelectronic  applications | Semantic Scholar
Band gap engineering of zinc substituted cobalt ferrite for optoelectronic applications | Semantic Scholar

Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial  films by high resolution electron energy loss spectroscopy: Journal of  Applied Physics: Vol 116, No 10
Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy: Journal of Applied Physics: Vol 116, No 10

Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4  nanocomposites for photocatalytic degradation of organic dyes -  ScienceDirect
Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes - ScienceDirect

Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly  efficient photocatalytic activity - ScienceDirect
Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity - ScienceDirect

Absorption spectra and Tauc plots (insets) for the direct band gap... |  Download Scientific Diagram
Absorption spectra and Tauc plots (insets) for the direct band gap... | Download Scientific Diagram

Wood-Tauc plots for CoFe 2 O 4 nanoparticles: (a) CF500, (b) CF600, (c)...  | Download Scientific Diagram
Wood-Tauc plots for CoFe 2 O 4 nanoparticles: (a) CF500, (b) CF600, (c)... | Download Scientific Diagram

Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial  films by high resolution electron energy loss spectroscopy: Journal of  Applied Physics: Vol 116, No 10
Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy: Journal of Applied Physics: Vol 116, No 10

The total density of state and band structure of CoFe2O4 | Download  Scientific Diagram
The total density of state and band structure of CoFe2O4 | Download Scientific Diagram

Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the  photocatalytic reduction of hexavalent chromium pollutant under UV and  artificial solar light - ScienceDirect
Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light - ScienceDirect

Processes | Free Full-Text | CoFe2O4 Nanomaterials: Effect of Annealing  Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton  Properties
Processes | Free Full-Text | CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties

Figure 1 from Optical band gap hierarchy in a magnetic oxide: Electronic  structure of NiFe2O4 | Semantic Scholar
Figure 1 from Optical band gap hierarchy in a magnetic oxide: Electronic structure of NiFe2O4 | Semantic Scholar